The Fermi Gamma-Ray Space Telescope
Discovers the Pulsar in the Young
Galactic Supernova Remnant CTA 1

A. A. Abdo,1,2 M. Ackermann,3,4 W. B. Atwood,5 L. Baldini,6 J. Ballet,7 G. Barbiellini,7,8
M. G. Baring,9,10 D. Bastieri,9,11 B. M. Baughman,12 K. Bechtol,13 R. Bellazzini,13 B. Benenji,
R. D. Blandford,14 E. D. Bloom,15 G. Bogaert,16 E. Bonamente,17 A. W. Borgland,18 J. Bregno,11
A. Bress,9 M. Brigida,9,17 P. Bruel,10 J. T. H. Burnett,18 G. A. Calliendo,19 R. A. Cameron,20
P. A. Caraveo,19 P. Carlson,19 J. M. Casandjian,21 C. Cecchi,21 E. Charles,19 A. Chekhtman,17
J. Conrad,25,26 G. Cutini,27 D. S. Davis,27,28 C. Dermer,22 A. de Angelis,28 F. de Palma,16,17
S. W. Digel,4 M. Dormody,8 E. do Couto e Silva,9 P. S. Drell,10 D. Dubois,23,29 D. Dumora,17
Y. Edmonds,18 C. Farnier,24 W. B. Focke,3 Y. Fukazawa,33,34 S. Funk,1 P. Fusco,16,17 F. Gargano,17
D. Gasparini,26 N. Gehrels,29,30 S. Germani,14,15 B. Giebels,6 N. Giglietto,16,17 F. Giordano,16,17
T. Glanzman,4,18 G. Godfrey,19 I. A. Grenier,17 M.-H. Grondin,17 J. E. Grove,6 L. Guillemot,17,20
A. S. Johnson,3 R. P. Johnson,5 T. J. Johnson,22 W. N. Johnson,4 T. Kamae,8 Y. Kanai,6
G. Kanbach,44 H. Katagiri,31 N. Kawashima,13,15 M. Kerr,18 T. Kishishita,36 B. Kilgarian,12
J. Knödlseder,5 M. L. Kocsis,6,11 F. Kuehn,21 M. Kuss,5 L. Latronico,4
M. Lemoine-Gouard,29,30 F. Longo,7,8 V. Longiou,29,30 F. Loparco,16,17 L. Lott,29,30
M. Lovellette,28,29,31 P. Lubrano,14,15 A. Makeev,32 M. Marelli,22 J. M. Mazzotta,17 J. E. McEnery,22
S. McGlynn,46 C. Meurer,9,10 P. F. Michelson,10 T. Mineo,16 Y. Mitthumsiri,11 M. Mizuno,21
A. A. Misoev,6 M. Monte,16,17 M. E. Monzani,21 A. Morselli,51 I. V. Moskalenko,26 S. Murigaya,
N. Nakamori,23 L. Nuss,21 M. Ohno,21 O. Ohsugi,21 A. Okumura,21 N. Omohichten,
E. Orlando,22 J. F. Ormes,4 M. Ozaki,36 D. Paneque,3 J. H. Panetta,6 D. Parent,38 V. Pelassa,24
R. Rando,10,11 P. S. Ray,22 M. Razzano,19 A. Reimer,3 O. Reimer,3 T. Reposeur,29,30 S. Ritz,22,24
L. S. Rochester,20 A. Garciarena,42 C. F. Rodríguez,4,14 R. W. Romani,3 M. Roth,18 F. Ryde,10 H. F.-W. Sardoszinski,
D. Sanchez,24 A. Sander,32 P. M. Saz Parkinson,4 T. L. Schalk,4 A. Sellerholm,26 C. Sgrò,5
E. J. Siskind,36 A. D. Smith,29,30 P. Smith,9 G. Spandre,21 P. Spinelli,21 J.-L. Starck,22
M. S. Strickman,12 D. J. Sussex,46 H. Tajima,3 H. Takahashi,3 T. Takahashi,36 T. Tanaka,3
J. B. Thayer,5 J. G. Thayer,5 D. J. Thompson,32 S. E. Thorsett,8 L. Tibaldo,21,22 D. F. Torres,44,47
G. Tosti,24,25 A. Tramacere,44,45 T. L. Usher,14 A. Van Eetti,11 N. Vilchez,16 V. Vitale,21 P. Wang,24

After the discovery of radio pulsars in the young supernova remnants (SNRs), some clear supernova remnant (SNR)-pulsar associations were discovered (most notably the Crab and Vela systems). Observations in the radio, x-ray, and gamma-ray bands with increasing sensitivity during the past 30 years have added many more SNR/pulsar associations. Yet we are still far from the complete census of these products of massive star deaths, which is needed to study a major population of stellar and Galactic astronomy. Here we report the discovery of a gamma-ray pulsar with a spin period of 316 ms, coinciding with the previously known gamma-ray source 3EG J0010+7309, thus confirming the identification of the neutron star (NS) powering the pulsar wind nebula (PWN) and the gamma-ray source. This pulsar detection implies that many of the yet-identified low-latitude Galactic gamma-ray sources also could be pulsars.

A survey of radio sources conducted at 960 MHz with the Owens Valley Radio Observatory in the 1960s led to the discovery of a previously uncataloged extended source (1), designated CTA 1, as the first object in Caltech’s catalog A. Follow-up radio surveys (2–7) with increased sensitivity and angular resolution showed that CTA 1 has the typical morphology of a shell-type SNR with an incomplete shell of filaments and extended emission from a broken shell roughly circular and ~90° arc min in diameter (Fig. 1). The excitation of atomic lines in the shocked interstellar medium with well-defined optical filaments (8) lends further support to the identification of CTA 1 as a young SNR in the Sedov phase of expansion.

The radio and x-ray characteristics of CTA 1 imply that it is 1.4 ± 0.3 kpc away (6) and that it exploded 5000 to 15,000 years ago (6, 9, 10). Imaging and spectroscopy of CTA 1 with ROSAT (11), ASCA (9), 3XM (10), and Chandra (12) revealed a typical center-filled or composite SNR with a central point source, RXJ0007.0+7303, embedded in a compact nebula, and a jetlike extension (12). The offset of the x-ray source from the geometrical center of the SNR suggested that it has a transverse velocity (11) of ~450 km s⁻¹. The natural interpretation of these data are that of a young NS, visible both in thermal surface and nonthermal magnetospheric emission (12), powering a synchrotron PWN. The thermal spectrum from the NS (11, 12) is not easily interpreted: The temperature is too high and the required emission area is too small if the NS has no atmosphere. A particle-heated polar cap could be a possibility. Alternatively, if the NS has a light element atmosphere and cools through a direct Urca process, a cooling age of (1 to 2) × 10⁷ years is also possible (11). Although no signs of periodicity could be found in the x-ray data (11), the energetics of the PWN lead to typical requirements for the time-averaged spin-down power of the putative pulsar of 10¹⁴ to 10¹⁵ erg s⁻¹. Very deep searches (12) for a counterpart of the x-ray source in radio and optical wavebands resulted only in upper limits. If RX J0007.0+7303 is indeed a radio pulsar, its radio luminosity is an order of magnitude below the faintest radio pulsars known (12). It is likely that the radio beam does not intersect the Earth.

High-energy emission (~10⁶ MeV) from the EGRET source 3EG J0010+7309 matches RX J0007.0+7303 spatially, although the EGRET position uncertainty is very large (13). The position derived from EGRET photons above 1 GeV (14) at galactic longitude / latitude b = 119.87, 105.2 with an error radius of 11 arc min (95% confidence) overlaps even better with the ROSAT source (l, b = 119.6602, 10.4629). It has thus been suggested that the 3EG source is an unresolved source in CTA 1 (14), or, more generally, that several unidentified gamma-ray sources are associated with SNRs (15). However, confirmation of such SNR associations based on imaging was not possible with the EGRET angular resolution. The CTA 1 gamma-ray source shows all indications of being a young pulsar: The gamma-ray flux was constant through the epochs of EGRET observations (1991 to 1995), and the spectrum showed a hard power law with an index of ~1.6 ± 0.2 and a spectral steepening above ~2 GeV (14), which is similar to other EGRET pulsars like Geminga and Vela. For an assumed pulsar beam of 1 sr (and taking into account the uncertainty in distance), the observed gamma-ray flux corresponds to a luminosity of (4 × 10³) erg s⁻¹, which is well within the range of the luminosities of Geminga [9 × 10³] erg s⁻¹, P ~ 237 ms (where P is the spin period] and Crab (4 × 10³] erg s⁻¹, P ~ 33 ms).

On 11 June 2008, the Fermi Gamma-Ray Space Telescope was launched into a low Earth orbit.
orbit (16). The imaging gamma-ray telescope LAPT (Large Area Telescope), Fermi’s main instrument, covers the energy range from 20 MeV up to ~300 GeV with a sensitivity that exceeds that of EGRET. The first exposures of the region of CTA 1 were made during the commissioning phase of Fermi LAT (30 June to 30 July 2008) and in the initial days (5 to 20 August 2008) of routine operations. Although the telescope was not yet fully tuned and calibrated during commissioning, >900 gamma-ray photons above 100 MeV from 3EG J0010+7309 were recorded during these exposures [see supporting online material (SOM)], which amounts to ~2.6 times the number collected with EGRET from this source over its entire mission.

A bright gamma-ray source is detected at $L_b = 119.652, 10.468$ with a 95% (statistical) error circle radius of 0.038 (a systematic error of 0.02 is not included). Figure 1 shows the LAPT source and the x-ray source RX J00070+7302, which is located central to the PWN, superimposed on the radio map at 1420 MHz. These fall on the edge of 3EG J0010+7309 ($L_b = 119.92, 10.54$) and its 99% error circle of radius 0.24°. The measured flux of the LAPT source ($3.8 \pm 0.2 \times 10^{-7}$ photons >100 MeV cm$^{-2}$ s$^{-1}$), with an additional systematic uncertainty of 30%, owing to the ongoing calibration of the instrument, which is consistent with the EGRET measured flux of $(4.2 \pm 0.5) \times 10^{-7}$ photons cm$^{-2}$ s$^{-1}$ (13).

The arrival times of the LAPT photons, which are recorded with 300-nsec accuracy and referenced to the Fermi satellite Global Positioning System clock, were corrected to the solar system barycenter (SSB) using the JPL DE405 solar system ephemeris and the Chandra x-ray position (Table 1). Photons with energy >100 MeV were within a radius of 1° around the source position and searched for periodicity. The results described here are not altered substantially if photons within selection radii between 0.7° and 2.5° are used.

Application of a new search technique based on photon arrival-time differencing (17)—which is highly efficient for sparse photon data—and refining and fitting the detections with the pulsar analysis packages PRESTO (18) and Tempo2 (19) resulted in the detection of strong pulsations in the selected photons (see SOM). Figure S1 shows that the pulsations are markedly present over the complete time interval of observation. The pulsar rotational ephemeris is given in Table 1. By extracting photons around the Vela pulsar from the same set of observations and applying the same analysis procedures, we found the rotational ephemeris for the Vela pulsar to be in good agreement with the values obtained by the LAPT radio pulsar timing collaboration (20).

A contour plot of period–period derivative search space reveals the pulsar (Fig. 2), as does the resulting gamma-ray light curve above 100 MeV (Fig. 3).

A NS with a momentum of inertia 1.0×10^{32} g cm2 and angular frequency ω is assumed to lose its rotational energy through magnetic dipole radiation and follow a braking law of $\dot{\omega} = -\alpha \omega^2$, which is a coarse estimate of the true age of a pulsar. The spin-down power $E_{\text{rot}} = \frac{1}{2} I \dot{\omega}$ and the dipole magnetic field strength, $B = 3.2 \times 10^{13} \sqrt{\frac{E_{\text{rot}}}{M}}$ G, also follow from the parameters of rotation.

For the CTA 1 pulsar, we derive a characteristic age of ~1.4 $\times 10^{10}$ years, a spin-down power of ~4.5 $\times 10^{16}$ erg s$^{-1}$, and a surface magnetic field strength of 1.1 $\times 10^{13}$ G. This field strength is higher than any of the EGRET detected pulsars and second highest among known gamma-ray pulsars. PSR J1509-58, with an inferred field of 1.54×10^{13} G, shows emission only up to ~30 MeV, whereas emission from the CTA 1 pulsar is present at least 5 GeV.

We searched archival data of exposures by XMM, ASCA, Chandra, and EGRET for periods near that extrapolated from the LAT ephemeris. The pulsar was not strongly detected in these data (21).

Table 1. Rotational ephemeris for the pulsar in CTA 1. The numbers in parentheses indicate the error in the last decimal digit. For the SSB correction, the position of the Chandra x-ray source (22) was assumed.

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Frequency derivative (s$^{-2}$)</th>
<th>Period (ms)</th>
<th>Period derivative (s$^{-3}$)</th>
<th>Epoch [MD (TDB)]</th>
<th>R.A. (J2000.0)</th>
<th>DEC. (J2000.0)</th>
<th>Galactic longitude</th>
<th>Galactic latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.165922467(9)</td>
<td>$-3.623(4) \times 10^{-12}$</td>
<td>315.863705(9)</td>
<td>$3.615(4) \times 10^{-13}$</td>
<td>54647.440 938</td>
<td>00° 08′ 07″</td>
<td>01′ 56″</td>
<td>$+73.3$</td>
<td>$-08′.1$</td>
</tr>
</tbody>
</table>
The new pulsar in CTA 1 exhibits all of the characteristics of a young high-energy pulsar, which powers a synchrotron PWN embedded in a larger SNR. The spin-down power of the CTA 1 pulsar of \(-4.5 \times 10^{35}\) erg s\(^{-1}\) is sufficient to supply the PWN with magnetic fields and energetic electrons at the required rate of \(10^{35} \text{ to } 10^{36}\) erg s\(^{-1}\) (10), and the pulsar age is consistent with the inferred age for the SNR. With its spin-down power of \(-4.5 \times 10^{35}\) erg s\(^{-1}\), the Crab pulsar supplies the Crab nebula with its requirement of \(-10^{36}\) erg s\(^{-1}\) with a similar efficiency (22). Comparing the total luminosity from the CTA 1 pulsar inferred from the LAT flux measured for 3EG J0010+7309 to the pulsar spin-down power, we estimate an efficiency of converting spin-down power into pulsed gamma rays that is \(-1\%\), if the emission is beamed into a solid angle of 1 sr. The Vela pulsar, which is of similar age, has a gamma-ray efficiency of 0.1\%; however, PSR B1706-44 (23) (with an age of \(1.7 \times 10^5\) years) has an efficiency of 1.9\%, and the much older Geminga pulsar (3.4 \(\times 10^7\) years) converts its spin-down into energetic gamma-rays with an efficiency of \(-3\%\).

The gamma-ray characteristics and the absence of a radio signal (12) from the CTA 1 pulsar are suggestive of the family of outer-gap or slot-gap model descriptions for energetic pulsars (24–26). These outer-magnetosphere models naturally generate gamma-ray emission over a broad range of phase, with superposed sharp peaks resulting from caustics in the pattern of the emitted radiation. Because the emission is predicted to cover such a large area of the sky (>1 sr) in such models, the total radiated luminosity as inferred from the observed pulsed flux could result in an efficiency as high as 10\%, depending on the magnetic inclination angle. The absence of the radio signal is readily explained by misalignment of a narrow radio beam and our line of sight. Both conditions can be met if we see the pulsar at a large angle with respect to the spin and magnetic field axes, but only a detailed model can quantify the viewing geometry of the CTA 1 pulsar. Spectral cut-offs at energies of 1 to 10 GeV that would be indicative of a polar cap mechanism with attenuation of outgoing photons via magnetic pair creation (27) or curvature radiation-reaction limited acceleration in an outer gap (28) are not yet discernible.

Our detection of a new gamma-ray pulsar during the initial operation of the Fermi LAT implies that there may be many gamma-ray–loud but x-ray– and radio-quiet pulsars.

Although 3EG J0010+7309 was long suspected to be a gamma-ray pulsar because of its clear association with a SNR at \(-10^4\) Galactic latitude, it is also fairly typical of many unidentified EGRET sources. If the radio remnant CTA 1 was located at low Galactic latitudes, it could have been more difficult to recognize because of the higher and structured radio background of the Galactic disk. About 75\% of the low Galactic latitude EGRET sources (\(|\beta|<10^\circ\), ~100 objects in the 3EG catalog and CTA 1 just on the edge of this region) are still unidentified, although several are associated with SNRs.

The unidentified low Galactic latitude EGRET sources represent the closer and brighter objects of a Galaxy-wide population of gamma-ray sources. EGRET was not sensitive enough to discern the more distant sources, which blurred into the diffuse Galactic emission. A model Galactic population conforming to the EGRET measurements (29), distributed in galacto-centric distance and height above the disk, yields several thousand sources of typical \(|\beta|>10^\circ\), \(-100\) objects in the 3EG catalog and CTA 1 just on the edge of this region) are still unidentified, although several are associated with SNRs.
Observation of Pulsed γ-Rays Above 25 GeV from the Crab Pulsar with MAGIC

The MAGIC Collaboration*

One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar’s spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric γ-ray Imaging Cherenkov (MAGIC) telescope to 25 giga–electron volts. In this configuration, we detected pulsed γ-rays from the Crab pulsar that were greater than 25 giga–electron volts, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high-energy cutoff also challenges the slot-gap scenario.

It is generally accepted that the primary radiation mechanism in pulsar magnetospheres is synchrotron-curvature radiation. This occurs when relativistic electrons are trapped along the magnetic field lines in the extremely strong field of the pulsars. Secondary mechanisms include ordinary synchrotron and inverse Compton scattering. It is not known whether the emission of electromagnetic radiation takes place closer to the neutron star (NS).

*The full list of authors and affiliations is presented at the end of this paper.