Search for dark matter in the sky

Aldo Morselli

INFN Roma Tor Vergata, I 00133 Roma, Italy

Abstract. The detection of γ-rays, antiprotons and positrons due to pair annihilation of dark matter particles in the Milky Way halo is a viable indirect technique to search for signatures of supersymmetric dark matter where the major challenge is the discrimination of the signal from the background generated by standard production mechanisms. The new PAMELA antiproton data are consistent with the standard secondary production and this allows us to constrain exotic contribution to the spectrum due to neutralino annihilations. In particular, we show that in the framework of minimal supergravity (mSUGRA), in a clumpy halo scenario (with clumpiness factor > 10) and for large values of $\tan(\beta) > 55$, almost all the parameter space allowed by WMAP is excluded. Instead the PAMELA positron fraction data exhibit an excess that it is very difficult to explain with secondary production. The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. The PAMELA excess in positron fraction combined with the new Fermi results on the electron-positron spectrum unavoidably testifies the presence of primary positrons in cosmic rays because it is not possible to explain the PAMELA ratio with a deficit of electrons at high energies. Here we discuss the status of indirect dark matter searches and a perspective for PAMELA and Fermi γ-ray space telescope experiments.

Keywords: Dark matter, Cosmic rays, MSSM

PACS: 96.50.sb, 95.35.+d, 95.85.Ry, 98.70.Sa

ANTIPROTON TO PROTON RATIO DATA

The PAMELA (a Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics) experiment is a satellite-borne apparatus designed to study charged particles in the cosmic radiation with a particular focus on antiparticles (antiprotons and positrons) [1]. The PAMELA antiproton data [2] are shown in figure 1 (left) together with the antiproton flux expected from standard secondary production. Cosmic ray propagation and production of secondary particles and isotopes is calculated using the GALPROP code [3]. The lines show the minimal and maximal fluxes as calculated in models with different propagation parameters tuned to match the boron-to-carbon ratio in cosmic rays ([4], [5], [6], [7]). The antiproton data collected by PAMELA [2] and BESS [8] are consistent with each other and with predictions for secondary antiproton flux thus excluding a strong antiproton signal from exotic processes. Figure 1 (right) is made in the framework of minimal supergravity (mSUGRA) by fixing the less sensitive parameters A_0, $\tan\beta$ and $\text{sign}(\mu) = +1$ and in the case of a clumpiness factor 10 and $\tan(\beta) = 55$. Following the analysis in [6], the region below the line in figure 1 (right) can be excluded based on antiproton data.

This result can be compared with estimates based on Fermi five-years sensitivity to WIMP annihilation photons (continuum spectrum) from the Galactic center as shown in
The antiproton-to-proton flux ratio as measured by PAMELA. The lines show an approximate range expected for the standard secondary production. Right: PAMELA excluded region in a clumpy halo scenario for a boost factor 10 in the framework of minimal supergravity (mSUGRA) in the case of \(\tan(\beta) = 55 \).

Sensitivity plot for observation of mSUGRA for PAMELA, LHC and Fermi for \(\tan(\beta) = 55 \) (left) and for PAMELA and Fermi for \(\tan(\beta) = 60 \) (right).

Figure 2 (left) [11, 12]. The red band is the cosmologically allowed region by WMAP [14]; the region above the blue line (\(M_{WIMP} \sim 200 \text{ GeV} \)) is not observable by Fermi due to the higher WIMP mass as one moves to higher \(M_{1/2} \). The dark matter halo used for the Fermi indirect search sensitivity estimate is a truncated Navarro, Frank and White (NFW) halo profile. For steeper halo profiles (like the Moore profile) the Fermi limits move up, covering a wider WMAP allowed region, while for less steep profile (like the isothermal profile) the Fermi limits move down, covering less WMAP allowed region. The LHC accelerator limits are from [15].

Figure 2 (right) is the same as the figure on the left but for \(\tan(\beta) = 60 \). It can be seen that for a clumpiness factor 10 all the WMAP region is already excluded. For larger
value of $\tan(\beta)$ the excluded parameter space is even larger, while for lower values the capability of the antiprotons flux to probe the mSUGRA scenario is very weak ([6],[10]).

FIGURE 3. PAMELA data and a possible contribution from Monogem and Geminga pulsars [19]. Black-dotted line shows the background from secondary positrons in cosmic rays from GALPROP.

POSITRON FRACTION AND ELECTRON + POSITRON FLUX

Contrary to the antiproton to proton ratio data, the PAMELA positron fraction data [16] exhibit an excess above ~ 10 GeV that it is very difficult to explain with secondary production [4],[6] [9]. We note that the change in the positron fraction data below ~ 10 GeV is probably due to the solar modulation and change in the polarity of the solar magnetic field compared to the previous cycle. Recently the experimental information available on the CRE spectrum has been dramatically expanded as the Fermi-LAT Collaboration has reported a high precision measurement of the electron spectrum from 20 GeV to 1 TeV performed with its Large Area Telescope (LAT) [20]. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. The temptation to claim the discovery of dark matter is strong but there are competing astrophysical sources, such as pulsars, that can give strong flux of primary positrons and electrons (see [17], [18], [21], [19] and references therein). At energies between 100 GeV and 1 TeV the electron flux reaching the Earth may be the sum of an almost homogeneous and isotropic component produced by Galactic supernova remnants and the local contribution of a few pulsars with the latter expected to contribute more and more significantly as the energy increases.

Two pulsars, Monogem, at a distance of $d=290$ pc and Geminga, at a distance of $d=160$ pc, can give a significant contribution to the high energy electron and positron flux reaching the Earth. With a set of reasonable parameters of the model of electron production, we can have a nice fit of the PAMELA and Fermi data (see figures 3 and 4). It is however true that we have a lot of freedom in the choice of these parameters because we still do not know much about these processes, so further study on high energy emission from pulsars are needed in order to confirm or reject the pulsar hypothesis.

Nevertheless a dark matter interpretation of the Fermi-LAT and of the PAMELA data is still an open possibility. In figure 5 is shown the parameter space of particle dark
matter mass versus pair-annihilation rate, for models where dark matter annihilates into monochromatic e^\pm [19]. The preferred range for the dark matter mass lies between 400 GeV and 1-2 TeV, with larger masses increasingly constrained by the H.E.S.S. results. The required annihilation rates, when employing the dark matter density profile imply typical boost factors ranging between 20 and 100, when compared to the value $\langle\sigma v\rangle \sim 3 \times 10^{-26} \text{ cm}^3/\text{sec}$ expected for a thermally produced dark matter particle relic.

How can one distinguish between the contributions of pulsars and dark matter annihilations? Most likely, a confirmation of the dark matter signal will require a consistency between different experiments and new measurements of the reported excesses with large statistics. The observed excess in the positron fraction should be consistent with corresponding signals in absolute positron and electron fluxes in the PAMELA data and all lepton data collected by Fermi [22]. Fermi has a large effective area and long projected lifetime, 5 years nominal with a goal 10 years mission, which makes it an excellent detector of cosmic-ray electrons up to $\sim 1 \text{ TeV}$. Future Fermi measurements of the total lepton flux with large statistics will be able to distinguish a gradual change in slope with a sharp cutoff with high confidence [23]. The latter, can be an indication in favor of the dark matter hypothesis. A strong leptonic signal should be accompanied by a boost in the γ-ray yield providing a distinct spectral signature detectable by Fermi.

The Galactic center (GC) is expected to be the strongest source of γ-rays from DM annihilation, due to its coincidence with the cusped part of the DM halo density profile.

The flux depends on the WIMP mass m_{wimp}, the total annihilation cross section σ times WIMP velocity v and the sum of all the photon yield dN_f/dE for each annihilation channel weighted by the corresponding branching ratio B_f. Apart from the $\tau\bar{\tau}$ channel, the photon yields are quite similar and depends from the neutralino mass. So fixing the halo density profile (for example a NFW profile), a dominant annihilation channel (that is $b\bar{b}$, $t\bar{t}$, W^+W^-, ...) and the corresponding yield, it is possible to perform a scan in the plane $(m_{\text{wimp}}, \sigma v)$ in order to determine the GLAST reach and the regions that are already excluded by the EGRET data in the 2 degrees region around the galactic center.
FIGURE 5. The parameter space of particle dark matter mass versus pair-annihilation rate, for models where dark matter annihilates into monochromatic e^{\pm}. Models inside the regions shaded in gray and cyan over-produce e^{\pm} from dark matter annihilation with respect to the Fermi-LAT and H.E.S.S. measurements, at the 2-σ level. The red and blue contours outline the regions where the χ^2 per degree of freedom for fits to the PAMELA and Fermi-LAT data is at or below 1.

FIGURE 6. Left: Cross Section times WIMP velocity versus the WIMP mass for the $b\bar{b}$ annihilation channel. The red region is allowed by EGRET data and detectable by GLAST for 3σ significance and 5 years of Fermi operation. Right: Same as figure on the left but for Sagittarius Dwarf assuming a Moore profile as described in [23].

[12], [13], i.e. the flux predicted by the susy+background model must not exceed the total flux predicted from EGRET data. The result of the scan is given in figure 6 (left) for the Galactic center and in figure 6 (right) for Sagittarius Dwarf. For every couple of values $(m_{\text{wimp}}, \sigma v)$ we compute the expected flux and we performed a standard
\(\chi^2\) statistical analysis to see if GLAST is able to disentangle the WIMP contribution among the standard astrophysical \(\pi^0\) background as used in [12]. The result is given at a 3\(\sigma\) confidence level. The background uncertainties are reflected in the red regions. We assumed a total exposure of \(3.7 \times 10^{10}\) cm\(^2\) s, for a period of 4 years of data taking and an angular resolution (at 10 GeV) of \(\sim 3 \times 10^{-5}\) sr.

An excess in gamma-ray should also be seen in the Galactic diffuse spectrum. Figure 7 (left) shows the LAT data averaged over all Galactic longitudes and the latitude range \(10^\circ \leq |b| \leq 20^\circ\). The hatched band surrounding the LAT data indicates the systematic uncertainty in the measurement due to the uncertainty in the effective area described above. Also shown on the right are the EGRET data for the same region of sky where one can see that the LAT-measured spectrum is significantly softer than the EGRET measurement [24]. Figure 7 (right) compares the LAT spectrum with the spectra of an \textit{a priori} diffuse Galactic emission (DGE) model. While the LAT spectral shape is consistent with the DGE model used in this paper, the overall model emission is too low thus giving rise to a \(\sim 10 - 15\%\) excess over the energy range 100 MeV to 10 GeV. However, the DGE model is based on pre Fermi data and knowledge of the DGE. The difference between the model and data is of the same order as the uncertainty in the measured CR nuclei spectra at the relevant energies. Overall, the agreement between the LAT-measured spectrum and the model shows that the fundamental processes are consistent with our data, thus providing a solid basis for future work understanding the DGE. Finally a line at the WIMP mass, due to the \(2\gamma\) production channel, could be observed as a feature in the astrophysical source spectrum [23]. Such an observation is a “smoking gun” for WIMP DM as it is difficult to explain by a process other than WIMP annihilation or decay and the presence of a feature due to annihilation into \(\gamma\) in addition would be even more convincing.

FIGURE 7. Left: Preliminary diffuse emission intensity averaged over all Galactic longitudes for latitude range \(10^\circ \leq |b| \leq 20^\circ\). Data points: Fermi LAT, red dots; EGRET, blue crosses. Systematic uncertainties: Fermi LAT, red; EGRET, blue. Right: Preliminary Fermi LAT data with model, source, and isotropic components for same sky region.
CONCLUSION

Recent accurate measurements of cosmic-ray positrons and electrons by PAMELA, and Fermi have opened a new era in particle astrophysics. The CRE spectrum measured by Fermi-LAT is significantly harder than previously thought on the basis of previous data. Adopting the presence of an extra e^\pm primary component with ~ 2.4 spectral index and $E_{\text{cut}} \sim 1 TeV$ allow to consistently interpret Fermi-LAT CRE data (improving the fit), HESS and PAMELA. Such extra-component can originate from pulsars for a reasonable choice of relevant parameters or by annihilating dark matter with $M_{DM} \sim 1 TeV$. Improved analysis and complementary observations (CRE anisotropy, spectrum and angular distribution of diffuse γ, DM sources search in γ) are required to possibly discriminate the right scenario. Their exotic origin has to be confirmed by complimentary findings in γ-rays by Fermi and atmospheric Cherenkov telescopes, and by LHC in the debris of high-energy proton destructions. A positive answer will be a major breakthrough and will change our understanding of the universe forever. On the other hand, if it happens to be a conventional astrophysical source of cosmic rays, it will mean a direct detection of particles accelerated at an astronomical source, again a major breakthrough. In this case we will learn a whole lot about our local Galactic environment. However, independently on the origin of these excesses, exotic or conventional, we can expect very exciting several years ahead of us.

REFERENCES

8. K. Abe et al. [BESS Coll.], arXiv:0805.1754
17. A.Boulares APJ 342 (1989) 807-813